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Overview

1. Introduction

- CAROLO P200 and spline-based flight path control

2. Positioning and Attitude Determination

3. Intelligent Flight Control

- Neural network topology and control loop architecture

- Statistical approach and results

- Online learning results

4. Review and outlook
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The CAROLO P200 UAV

Aircraft specifications:

• take-off weight – 6 kg (1 kg payload)

• wing span – 200 cm

• cruising speed – 20 m/s

• flight time – 60 min

• fully automatic flight control

Simulation specifications:

• nonlinear simulation environment

• simplified atmosphere 
Dryden turbulence model

• actuator and sensor models



Aerial Photography Mission



Mission Profile

Photo Mission of the Leina Canal near Gotha, Germany



Aerial Photo

Joining of 200 Pictures
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Spline-Based Trajectories

defined by:

x t a3 t 3 a2 t 2 a1 t x0

y t b3 t 3 b2 t2 b1 t y 0

t = spline parameter

a / b = coefficients from geodetic x-y 
coordinates

The known geometry of the flight path allows the 
calculation of important flight mechanical variables.



Positioning and Attitude Determiniation, the MINC S olution

dimensions: 80 x 40 x 16 mm³ Mass 25g

Miniature I ntegrated N avigation & C ontrol System:

� Integrated Navigation System
o MEMS-based inertial sensors

o GPS/INS data fusion on board

� precise attitude determination

at 100 Hz using low-cost sensors

� complete autopilot
o flight path setting using splines, 

not just simple waypoints

o fully automatic operation, 

from takeoff to landing (option)
The MINC – System: Sensor Block and
Navigation Core (single PCB version)



GPS/INS Integration – Kalman Filter
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� discrete error state Kalman Filter:
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� usage of time-diff. carrier phases (CP) instead of delta-rng



4. Flight Test for Positioning and Attitude Determi nation

� reference navigation system based on FOG-IMU

�

�



4. Flight Test Results

high-dynamiclow-dynamic



4. Flight Test Results

high-dynamiclow-dynamic



� extensive road and flight tests; reference: high-

precision IMU with fibre-optic gyros (FOG-IMU)

� MINC features a 17-state Kalman navigation filter

for in-flight GPS/INS data fusion:

o tightly-coupling allows for GPS-based IMU aiding

even with less than 4 satellites in view

o tested and verified long-term-stable accuracy

o typical pitch & roll error: better 0.5 °°°° (1 σσσσ)

o typical yaw error: better 0.9 °°°° (1 σσσσ)

o navigation filter tested on both air and 

surface vehicles

MINC-Autopilot Accuracy

test flight set-up: 
MINC and FOG- IMU

test aircraft “Carolo T200”
(bungee start)
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Flight Control using Neural Network Topology

• multi-layer feedforward networks

• linear and sigmoid transfer functions

• backpropagation training-algorithm

• learning from experience
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Short Term Memory

• modular neural controller and predictor units

• time delayed inputs

• short term memory due to historical data

• modelling of non-linear relationships
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Control Loop Architecture

Creation of a controller error signal by backpropagation of the spline deviation 
through the inverse dynamics of the predictor.
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Exemplary Trajectories
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Training Approach

adequate training data is highly important for training success

systematic network design approach:

• 50-80 networks for the same learning task

• every network topology used 5-10 times

• statistical evaluation of the training success

no extensive network tuning and less 
coincidence regarding learning success

training data synthesis:

• trajectory contains manoeuvres of an 
UAV-mission flight envelope

• modelling of atmospheric influences 
including Dryden turbulence spectrum

• 10000 training patterns used

training data selection is a premise 
for good basic knowledge
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Trainings Results – Basic Knowledge

validation and test show very small errors
adequate generalisation capabilities
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Neural Predictor Error
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Online Training Results

The offline-trained basic knowledge can be recalled on an untrained trajectory 
and is improved during operation.
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Review and Outlook

Attitude Determination and Flight Control

• Attitude better than 1 Degree using MEMS sensors and  Kalman-Filtering

• Simulation of Flight Control with Neural Networks has been proven

Outlook for Flight Control:

• expansion of the online-learning algorithms

• implementation of Ljapunow-stability analysis

• flight test validation

• combination of neural and analytic control adaptivity



Halley Station - Antarctica

Questions?


