# Cognition-enabled Everyday Manipulation and Cognitive Robot Abstract Machines

Michael Beetz

Intelligent Autonomous Systems Technische Universität München









# The Brain, Movement, and Manipulation

Dan Wolpert: motor chauvinism

Q: why do we have a brain?

A: to produce complex and adaptable movement

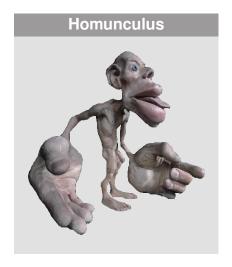
- movements are the only way we have to
  - interact with the world
  - communicate



# The Brain, Movement, and Manipulation

Dan Wolpert: motor chauvinism

Q: why do we have a brain?


A: to produce complex and adaptable movement

- movements are the only way we have to
  - interact with the world
  - communicate

### **Even the biggest Trees Don't Have Brains**



# The Brain, Movement, and Manipulation (2)



### The Human Brain Is Mostly for **Manipulation**

- Q: why do we have such a big brain?
- A: to do goal-directed object manipulation
- because always doing
  - the right thing
  - to the right object
  - in the right way

is difficult

### Decisions, Decisions

#### Goal-directed Object Manipulation

### How to pick up an object?

#### decide on

- where to stand?
- which hand(s) to use?
- ▶ how to reach?
- which grasp?
- where to grasp?
- how much force?
- how much lift force?
- ▶ how to lift?
- how to hold?

- in the context of getting an object out of a kitchen container
- ▶ if the glass is filled
- in the context of using the object as a tool
- ▶ if people are present
- **.**..

### Two Personal Conclusions

- goal-directed object manipulation is hard!
- cognitive mechanisms including learning, reasoning and planning are needed!

# Human-scale Everyday Manipulation

#### what does that mean?

- 1. number of tasks: ≥ 40.000 webpages on wikihow.com
- 2. tasks include tasks such as o clean up, o prepare meal, building Ikea shelves,
   repair instructions
  - underspecified
  - complex
  - require competence
  - require manipulation skills



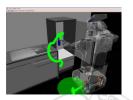
# Human-scale Everyday Manipulation

### what does that mean?

- 1. number of tasks: ≥ 40.000 webpages on wikihow.com
- 2. tasks include tasks such as ∘ clean up, ∘ prepare meal, ∘ building lkea shelves, ∘ repair instructions
  - underspecified
  - complex
  - require competence
  - require manipulation skills

#### necessary for

- ▶ robots@home
- ▶ robots@work




CRAM

### Concepts Robots making pancakes







# "Concepts"



# Our Working Definition of Cognition

# Cognition = information processing infrastructure for decision making and action parameterization that

- enables an agent agt
- ▶ to perform a set of tasks tsk
- better wrt performance measure p
   (typically generality, flexibility, reliability, performance, ...)
- based on
  - experience and learning
  - knowledge/models and reasoning
  - forward models and planning/prediction

about the consequences of actions



### Q. How do we know that our robot is "cognitive"?

If the cognitive mechanisms (learning, reasoning, planning) enable the robot to improve its performance in terms of (o) generality, (o) expected utility, (o) flexibility, and (o) reliability.

**Example:** getting objects out of kitchen containers



#### **Dimensions of Cognitive Control**

### getting objects out of any kitchen container





#### **Dimensions of Cognitive Control**

#### Environment and task adaptation

### General Planning-based Method

#### closed loop



# Specialized Learned Stereotypical Skills

#### open loop





### Concepts **Predictive Decision Making**

**Dimensions of Cognitive Control** 

### Without Foresight

#### objects out of reach



### With Foresight

#### within reach

CRAM



# Using Knowledge

Concepts

### "more knowledge means less search"

- task: get the pancake mix!
  - how does it look?
  - where could it be?
  - how do I handle it?
- what do I do with the thing that I am currently seeing in order to clean up?
  - what is it?
  - what state is it in?
  - where does it belong? (in general, in this environment, in this state)
  - how do I handle it?



### Robots that know what they are doing...



Concepts

#### ...can...

- answer queries about
  - what they do
  - what they have done
  - how and
  - ► why
- ...and use this knowledge to
  - deal with execution problems
  - learn faster
    - act more reliably
    - help programmers to debug

# Cognitive Robot Abstract Machine

The Interface Layer for Cognitive Robotics





### What's Missing in CR: The Interface Layer

... as in many other Fields

Concepts

#### adapted from Pedro Domingos: "What's Missing in AI: the Interface Layer"

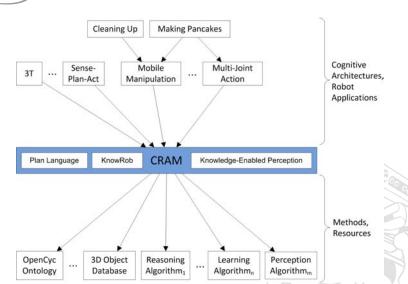
| Field                | Interface Layer         | Below the Layer                                         | Above the Layer              |
|----------------------|-------------------------|---------------------------------------------------------|------------------------------|
| Operating<br>Systems | virtual machines        | hardware                                                | software                     |
| Programming systems  | high-level<br>languages | compilers, opti-<br>mizers,                             | programming                  |
| Databases            | relational model        | query optimiza-<br>tion, db design,<br>transaction mgmt | enterprise appli-<br>cations |

CPA Loops

CRAM CPA Loops



### What's Missing in CR: The Interface Layer


... as in many other Fields

Concepts

adapted from Pedro Domingos: "What's Missing in AI: the Interface Layer"

|   | Field             | Interface Layer  | Below the Layer                                                           | Above the Layer               |
|---|-------------------|------------------|---------------------------------------------------------------------------|-------------------------------|
|   | Operating         | virtual machines | hardware                                                                  | software                      |
| ļ | Systems           |                  |                                                                           |                               |
|   | Programming       | high-level       | compilers, opti-                                                          | programming                   |
|   | systems           | languages        | mizers,                                                                   |                               |
|   | Databases         | relational model | query optimiza-<br>tion, db design,<br>transaction mgmt                   | enterprise appli-<br>cations  |
|   | Personal robotics | CRAM             | grounding in robot, Al tools, the nuts and bolts of intelligent robotics, | robot application programming |

raise the conceptual level at which service and personal robot applications are programmed!



CRAM

# An Interface Layer for Cognitive Robots

### Programmer

- designs
- implements

- cognitive architecture
- cognitive robot applications
- ▶ ..

# CRAM

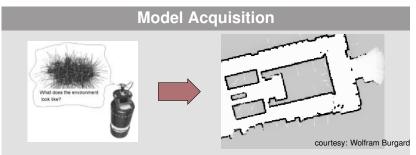
Cognitive Robot Abstract Machine

knowledge processing

cognitive perception

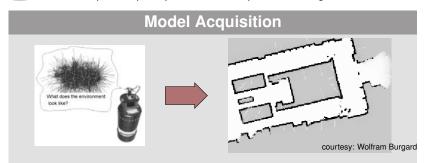
decision making

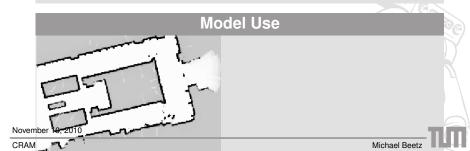
**ROS Robot** 


# Cognition-enabled Perception-Action Loops



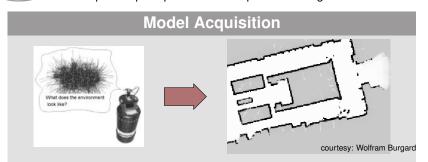


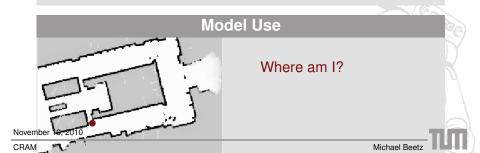

# Cognition-enabled Control — the Very Idea


Example: Map Acquisition and Map-based Navigation





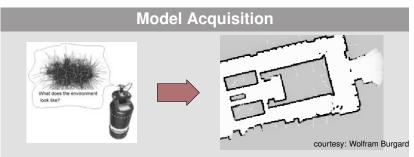


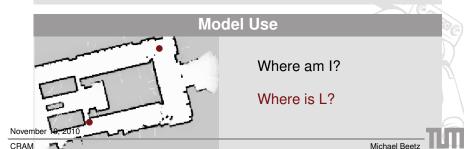









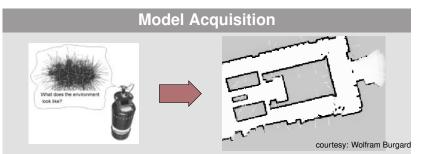






# Cognition-enabled Control — the Very Idea

Example: Map Acquisition and Map-based Navigation









# Cognition-enabled Control — the Very Idea

Example: Map Acquisition and Map-based Navigation





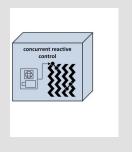
### Why Cognition-enabled Control?

### **General Navigation Routine**

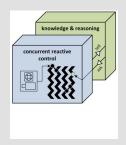
```
routine navigate \langle tsk \rangle
in parallel do continually estimate your position
whenever you are lost do relocalize
main process
if reachable(dest(\langle tsk \rangle))
then nav-plan \leftarrow compute-nav-plan(curr-pos, dest(\langle tsk \rangle))
execute nav-plan
```

# Why Cognition-enabled Control?

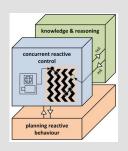
### **General Navigation Routine**


```
routine navigate \langle tsk \rangle
in parallel do continually estimate your position
whenever you are lost do relocalize
main process
if reachable(dest(\langle tsk \rangle))
then nav-plan \leftarrow compute-nav-plan(curr-pos, dest(\langle tsk \rangle))
execute nav-plan
```

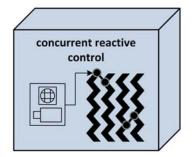
Cognitive mechanisms enable us to control the robot


- reliably
- flexibly
- efficiently

in concise control programs


### Perception-Guided **Control Programs**




### Cognition-Enabled **Perception-Guided Control Programs**



#### Cognition-Enabled **Perception-Guided** Action Plans



### Perception-Guided Control Programs









# Programs/Plans for Everyday Manipulation



- Many potential sources of error!
- Control program must detect and recover from failure cases ( $\geq$  90% of the code)



# Programs/Plans for Everyday Manipulation



- Many potential sources of error!
- Control program must detect and recover from failure cases (≥ 90% of the code)



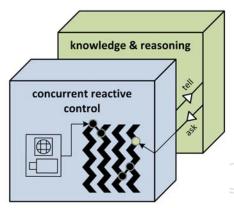
# Programs/Plans for Everyday Manipulation

```
(EXPANDED-GOAL
(:ACHIEVE (ENTITY-PICKED-UP ENTITY) :PURPOSE PURPOSE :SIDE (OR SIDE (USED-ARM-WITH-GOA
: ACHIEVE-ENTITY-PICKED-UP
((ENTITY TR-RULE-NAME POSE-FAILURE-TOLERANCE POSE-TRIES GRIP-TRIES CARRY-TRIES SIDE PU
 (ENTITY : ACHIEVE-ENTITY-PICKED-UP (ST-CREATE : DIST 0.2 : AZ 0.3926991) 3 3 0 (OR SIDE
 NIL)
(LET ((INNER-CONTACTS NIL))
  (WITH-FAILURE-HANDLING FAILURE ((CARRY-TRIES-COUNT CARRY-TRIES) (GRIP-TRIES-COUNT GR
    (RECOVER ((TYPEP FAILURE 'ENTITY-LOST-FAILURE)
              (LET ((SIDE (ENTITY-GRIPPING-SIDE ENTITY NIL)))
                (HANDLE-PLAN-FAILURE CARRY-TRIES-COUNT :ENTITY ENTITY :DO-ALWAYS ((ENTI
             ((TYPEP FAILURE 'GRIP-FAILURE)
              (HANDLE-PLAN-FAILURE GRIP-TRIES-COUNT :ENTITY ENTITY :DO-RETRY ((RECOVER-
             (T (HANDLE-PLAN-FAILURE O :ENTITY ENTITY)))
    (MONITOR)
    (PERFORM
    (:TAG FIND-ENTITY
```

(SETF ENTITY

(EXPANDED-GOAL (:PERCEIVE ENTITY) :PERCEIVE ((DESIGNATOR TR-RULE-NAME SKIP-(LET\* ((#:GOAL1359 (MAKE-INSTANCE 'ENTITY-FOUND :DESIGNATOR DESIGNATOR)) (#:ROUTINE1360 (ARBITRATION #:GOAL1359 (COGITO::FILTER-SETTINGS (LI

(#:ROUTINE-RES1361 NIL)) (SETGV :GOAL-TASK (TYPE-OF #:GOAL1359) #:TAG-GOAL1363) (PULSE (GETGV :GOAL-START-FLUENT (TYPE-OF #:GOAL1359)))


(:TAG #:TAG-GOAL1363

### Interesting Numbers

- 2 activities
- 7 manipulation plans
- hierarchy of both activities is 4–7 levels deep
- six kinds of failures are monitored
- expanded plan has approximately 1200 lines
- approx. 700 conditions are tested during one run



## Cognition-Enabled Perception-Guided Control Programs





### Concepts Realization of Control Decisions

CRAM

### instead of prespecifying decisions

```
(at-location (OBJ.POS.x - 60, OBJ.POS.y - 10)
   (pick-up
              OBJ)))))
```

#### let the robot infer the decision

```
(at-location (the ARPlace
                (task (a task (task-action
                                                  pick-up)
                                (objectActedOn
                                                  (a cup
                                                            on table)))))
    (with parameters
        ((reaching-trajectory ... ) (grasp-type ... ))
        (grasp-type ... ))
           (pick-up all cups)))))
```



# Cognition: Inferring Control Decisions

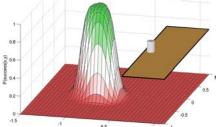
Lazy, evidence-based decision making

Concepts

| Step 1 | ARPlace | Step 2 | ARPlace |
|--------|---------|--------|---------|
|        |         |        |         |
| Step 3 | ARPlace | Step 4 | ARPlace |
|        | 9       |        |         |

"A decision is a commitment to a plan or an action parameterization based on evidence and the expected costs and benefits associated with the outcome."

adapted from Resulaj et al, Changes of mind in decision-making


Concepts CRAM CPA Loops



# Cognition: Decisions Based on Foresight

### Representation:

- Discretized space of potential maniplation places
- Mapping to expected utilities



### Advantages:

- are learned from and are grounded in observed experience
- take state estimation uncertainties into account
- enable least-commitment planning
- maximize expected utility

z IIII



# Cognition: Knowledge-Enabled Perception

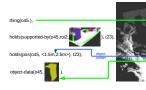
#### Semantic Map, Encyclopedic Knowledge



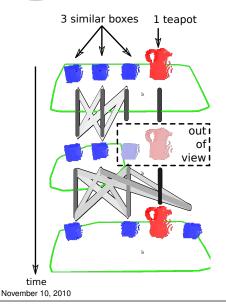
K-Copman perception server



#### missingObjects(Meal, Missing):-

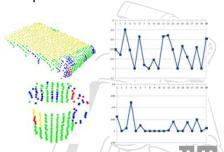

instanceOf(Table, 'table'), in(Table, Kitchen). primaryFunction(Table, 'HavingAMeal'), perceivedObjectsOnPlane(Table, Perceived), neededObjectsForMeal(Perceived, Needed),

setOf(Obi. (member(Obi, Needed), not( member(Obj, Perceived))

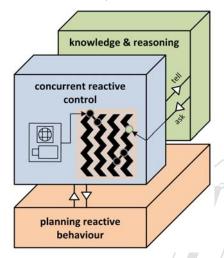

Missina).

#### First-Order Probabilistic Reasoning



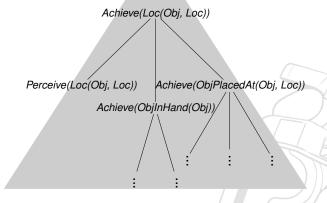



# Cognition: Acting on the Right Objects



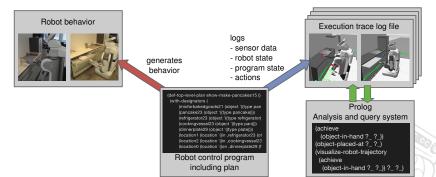

Concepts

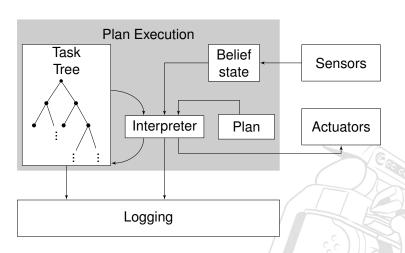
- Similarity measures based on different sensory information
- Dealing consistently with geometric and appearance based features in a probabilistic framework




## Cognition-Enabled Perception-Guided Control Plans




CRAM


### **Declarative Goal Hierarchies**





# How do robots know what they are doing?



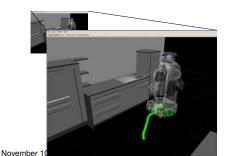




Achieve(Loc(bottle, table)) Achieve(ObjectOpened(fridge)) Achieve(ObjPlacedAt(bottle, table)) Achieve(ObjInHand(bottle)) Achieve(ObjectClosed(fridge))

# **Recording Execution Traces**

#### Achieve(Loc(bottle, table))


Achieve(ObjectOpened(fridge))

Achieve(ObjPlacedAt(bottle, table))

CRAM

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))



#### Action:

▶ Move to fridge

#### Log:

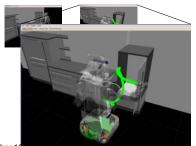
- ► Achieve(Loc(bottle,table)) running
- Achieve(Loc(Robot, I)) running
- ► Trajectory of robot

CRAM

Michael Beetz



#### Achieve(Loc(bottle, table))


Achieve(ObjectOpened(fridge))

Achieve(ObjPlacedAt(bottle, table))

CRAM

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))



### Action:

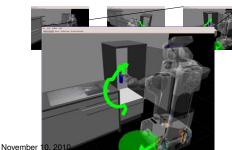
Open fridge

#### Log:

- Achieve(Loc(Robot, I)) succeeded
- Achieve(ObjectOpened(fridge)) running
- Trajectory of arm



#### Achieve(Loc(bottle, table))


Achieve(ObjectOpened(fridge))

Achieve(ObjPlacedAt(bottle, table))

CRAM

Achieve(ObjInHand(bottle))

Achieve(ObjectClosed(fridge))



#### Action:

Grasp the bottle

#### Log:

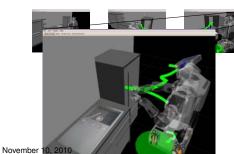
- Achieve(ObjectOpended(fridge)) succeeded
- Achieve(ObjInHand(bottle)) running
- Perceived properties of bottle (object designator)

CRAM

Michael Beetz

### Concepts Recording Execution Traces

### Achieve(Loc(bottle, table))


Achieve(ObjectOpened(fridge))

Achieve(ObjPlacedAt(bottle, table))

CRAM

Achieve(ObjInHand(bottle))

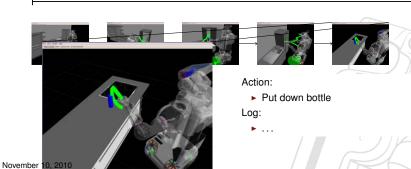
Achieve(ObjectClosed(fridge))

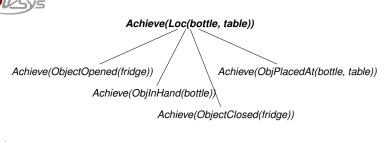


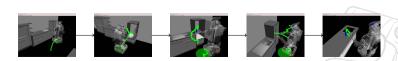
Action: ► Close the fridge

Log:

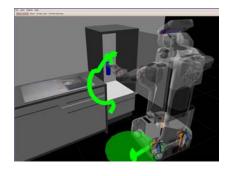
#### Achieve(Loc(bottle, table))


Achieve(ObjectOpened(fridge))


Achieve(ObjPlacedAt(bottle, table))


CRAM

Achieve(ObjInHand(bottle))


Achieve(ObjectClosed(fridge))





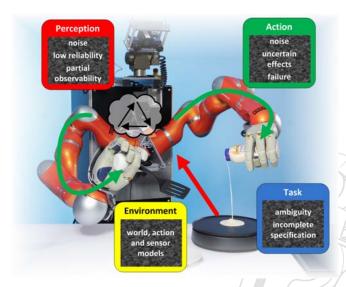


# Reasoning based on Execution Traces



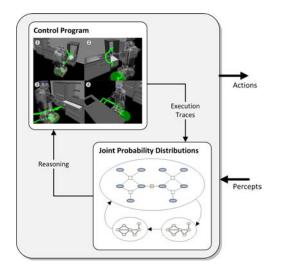
Concepts

- Where did you stand?
- ► How did you move?
- ► How did you move the arm while grasping the bottle?


# 'Prolog' query

tz III

# Bayesian Cognitive Robotics


CRAM

Concepts



# Cognition: Learning from Execution Traces

CRAM



Concepts

- generate probabilistic model structures from semantic plans
- models of continuous & discrete behaviour
- learn model parameters from execution traces
- complex situational dependencies (relational descriptions)



# Cognition: Reasoning Patterns

#### Prediction

```
P(successful(Robot, Grasp, Obj, Sit) |
graspType(Grasp, SidewaysRight) ∧ objectType(Obj, Cup) ∧
relOrientation(Robot, Cup, 0.05, Sit) ∧ relPos(Robot, Obj, 5.8, -3.2, Sit) ∧
obstructs(Clutter1, Obj, Sit) ∧ relPos(Clutter1, Obj, 3.45, 5.23, Sit) ∧
size(Clutter1, 4.2, 3.5, Sit))
P(successful(Robot, Grasp2, Obj2, Sit2) |
successful(Robot, Grasp1, Obj1, Sit1) ∧ precedes(Sit1, Sit2))
```

### Evaluating Alternatives

```
 \begin{aligned} & \mathsf{P}(\mathsf{graspType}(\mathsf{Grasp},\,?\mathsf{type}) \mid \\ & \mathsf{successful}(\mathsf{Robot},\,\mathsf{Grasp},\,\mathsf{Obj},\,\mathsf{Sit}) \wedge \ldots) \end{aligned}
```

### Diagnosis

```
 \begin{array}{l} P(localizationQuality(Robot, Bad, Sit) \mid \\ \neg successful(Robot, Grasp, Obj, Sit) \land \ldots) \\ P(perceptionAccuracy(Robot, Bad, Sit) \mid \\ \neg successful(Robot, Grasp, Obj, Sit) \land \ldots) \end{array}
```



Cognition-enabled Perception-Action Loops

- Perception-guided control programs define how a robot is to respond to sensory inputs and failures in order to accomplish its goals.
- They become cognitive by reasoning about control decisions in order to achieve superior...
  - robustness
  - flexibility
  - efficiency
- By turning control programs into semantically interpretable action plans, a robot can...
  - explicitly represent its goals and monitor success during temporal projections
  - reason about plan execution and explain its behaviour to humans
  - learn models based on data gathered during plan execution



### Thanks!

## Available in TUM ROS Package Repository:

http://tum-ros-pkg.svn.sourceforge.net/

