Groupement de Recherche en ROBOTIQUE

Prospectives des GT GT2- Véhicule terrestres

Introduction

- ✓ Création du Groupement de Recherche (GdR) Robotique par le CNRS en 2007.
- Une soixantaine d'équipes de recherches de différents établissements (Universités, CNRS, INRIA, CEA, ONERA, Irstea, etc...).
 - ~1000 chercheurs et enseignants-chercheurs, ingénieurs, 500 doctorants, étudiants.
- Club des partenaires industriels
 - Une trentaine d'entreprises affiliées à ce club,

Missions & objectifs

- Structure d'animation scientifique transverse aux laboratoires avec un rôle fédérateur au niveau national.

- Maintenir et augmenter le niveau scientifique de la communauté via des séminaires.

- Produire des documents de synthèse.

- Mener des études prospectives et faire émerger des problématiques scientifiques.

- Favoriser les collaborations entre membres.

- Elaborer des tutoriels.
- Représenter la communauté auprès des organismes, des agences et des sociétés savantes ainsi qu'à l'international.
- Susciter des synergies Industrie Recherche.

Organisation en groupe de travail

- ✓ GT1 : Robotique et santé,
- ✓ GT2 : Véhicules autonomes VT, UAV, Sous-Marin,
- GT3 : Manipulation Multi-échelle,
- ✓ GT5 : Interactions personnes / systèmes robotiques,
- ✓ **GT7**: Robotique humanoïde,
- ✓ **GT8**: Neurosciences et robotique.

Organisation en groupe de travail

- ✓ GT1 : Robotique et santé,
- ✓ GT2 : Véhicules autonomes VT, UAV, Sous-Marin,
- ✓ GT3 : Manipulation Multi-échelle,
- GT5: Interactions personnes / systèmes robotiques,

- ✓ **GT8** : Neurosciences et robotique.

Contexte scientifique GT2-roues

Problématiques scientifiques

Coopération de robots & commande en formation

- Perception des autres robots
- Communication
- Décision sur la forme
- Précision relative d'asservissement

Problématiques scientifiques

Coopération de robots & commande en formation

- Perception des autres robots
- Communication
- Décision sur la forme
- Précision relative d'asservissement

Evolution à dynamique forte et incertaine

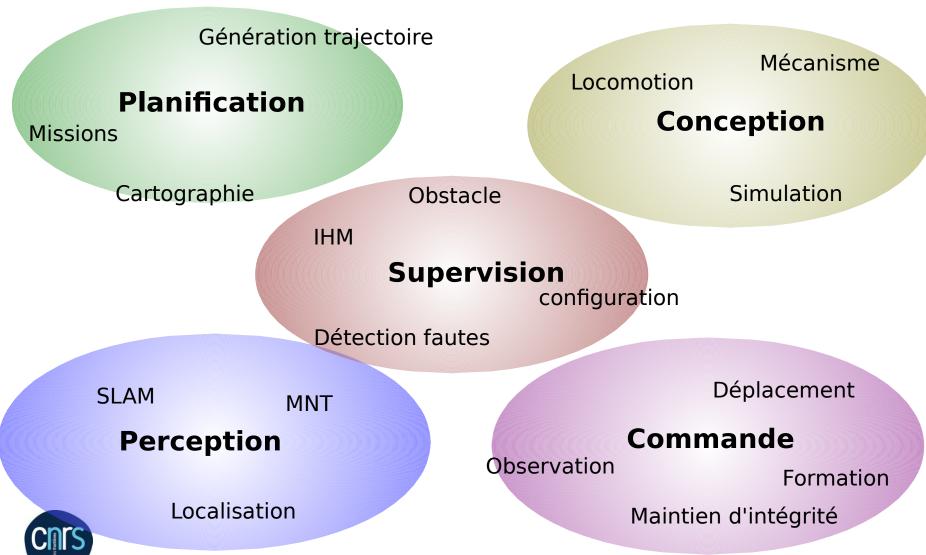
- Estimation des conditions d'interaction
- Commande précise des déplacements
- Gestion des incertitudes de perception
- Reconnaissance/interprétation de scènes

Problématiques scientifiques

Maintien d'intégrité

- 1- Traversabilité & obstacle
 - Détection d'obstacle, de l'environnement 3D
 - Gestion du passage

- 2- Stabilité renversement
 - Estimation du risque
 - Evaluation temps réelle des limites
 - Calcul d'un domaine de stabilité



- 3- Contrôlabilité du mouvement (admissibilité)
 - Limitation des commandes (reconfiguration)
 - Gestion des capacités du robot

Sûreté de fonctionnement

Thématiques de Recherches

Manoeuvre/évitement

1. Conception et sélection de modes sensori-moteurs

2. Coordination manipulation et mouvement Stabilisation point

3. Perception et interprétation Suivitrajectoire Tracking cible

4. Sécurité, s

5. Supervisio

6. Coopération **GPS**

Laser

7. Conception inncamerates

Lidar 3D

- 1. Conception et sélection de modes sensori-moteurs
- 2. Coordination manipulation et mouvement

BASystème

6. Coopérations multi-Robots

7. Conception innovantes

- 3. Perception et interprétation de scènes
- 4. Sécurité, sûreté de fonctionnement

1. Conce

sensori-moteurs

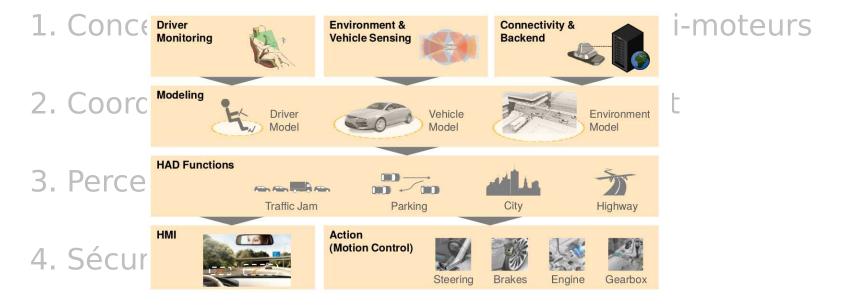
2. Coord

vement

3. Percep

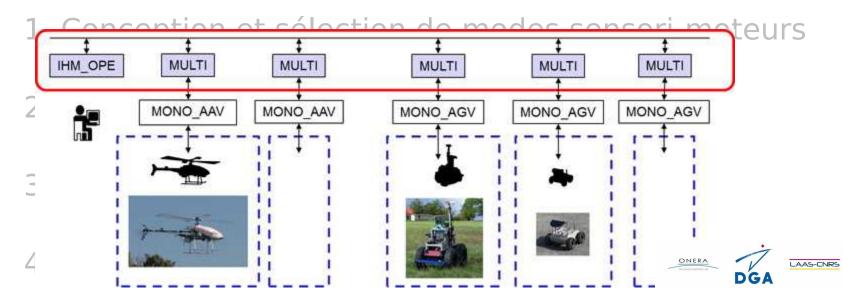
enes

- 4. Sécurité, sûreté de fonctionnement
- 5. Supervision & au
- 6. Coopérations mu

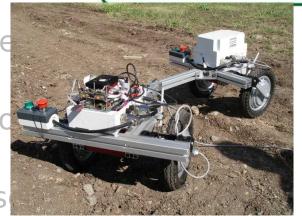


Darpa

5. Supervision & autonomie partagée



7. Conception innovantes



- 5. Supervision & autonomie partagée
- 6. Coopérations multi-Robots
- 7. Conception innovantes

- 1. Conception et sélection de mode
- 2. Coordination manipulation et mo
- 3. Perception et interprétation de s

OpenWheel

robotique

ANR FastSécurité, sú

/ision

rtagé

6. Coopérations m

7. Conception innovantes

- 1. Conception et sélection de modes sensori-moteurs
- 2. Coordination manipulation et mouvement
- 3. Perception et interprétation de scènes
- 4. Sécurité, sûreté de fonctionnement
- 5. Supervision & autonomie partagée
- 6. Coopérations multi-Robots
- 7. Conception innovantes

http://www.gdr-robotique.org