

Zoom on ATV Safety (Automated Transfer Vehicle)

Gérard GALET

04 Juin 2012

GDR Robotique - 04 Juin 2012 - Zoom on ATV safety

Safety requirements / Life on board ISS

High level ISS safety requirements:

- ATV shall be 2 failures safe for ISS and crew safety in proximity or attached to ISS
- In case ATV control is lost, ATV shall not enter:
 - → The Approach Ellipsoid (AE) within 24 hours
 - → The Keep Out Sphere (KOS) within 4 orbits

ISS and crew safety is ensured by:

- ATV vehicle design
- ATV mission design
- Ground monitoring
- Crew monitoring

Safety impacts on ATV Vehicle design

Redundancy at equipment level and at functional level and managed by FDIR

ATV is "flown" by the on-board **Guidance, Navigation and Control (GNC)** system.

Rendezvous Monitoring and Collision Avoidance

- On-board Flight Control Monitoring (FCM)
 - → First level monitoring, using Flight Application Software
 - → Monitors GNC behaviour against thresholds ensuring ISS safety. When thresholds are exceeded
 → Triggers ESCAPE → Nominal GNC & Propulsion.
 - ◆ Collision Avoidance Manoeuvre (CAM) if anomaly detected during departure or #SCAPE
 - ◆ No FTC (Fault Tolerant Computer) reset unless a CAM is triggered
- On-board Proximity Flight Safety (PFS) 2nd independent spacecraft
 - ◆ Coarse Monitoring + Monitoring of ATV health (in particular "reset")
 - ◆ Independent safety chains (power, computer, sensors, actuators, etc.)
 - ◆ Dedicated SW (class A) running on dedicated computers: Monitoring and Safety Unit (MSU)
 - → Always triggers CAM → Dedicated system

ATV Measurement Sensors/ Actuators

Safety impact on ATV mission design

Safety impact on ground operations (1/2)

To fulfil some requirements, the ground and/or the crew must be in the loop

→ Operational Control, via OCAD (Operational Control Agreement Document)

OCAD implemented via operational documentation

- For crew activities → ODF (On-board Data File)
- For ATV-CC
 - Flight Rules (Joint and Internal ATV-CC)
 - Flight Control procedures
 - Monitoring items
 - → Flight Dynamics Subsystem monitoring and procedures

Major impacts on ATV-CC design:

ATV-CC architecture: e.g. Redundancy of equipment to ensure continuity of monitoring function and the capability to send urgent commands

ATV-CC Safety Critical SW: e.g. Orbit determination and manoeuvre computation SW are critical → two different algorithms have been implemented for both tasks

Handling of Hazardous Commands: e.g. Implementation of a mechanism to ensure a double check each time a command flagged "hazardous" is to be up-linked

Safety impact on ground operations (2/2)

Examples of specific operations to be performed:

Calculate arrival in S-1/2 box with very high accuracy

GNC monitoring of final approach:

- Continuous monitoring from S-1/2
- To be able to provide GO/NO GO criteria at any hold point
- To be able to detect off nominal situations at any time

Configure the 2nd spacecraft from ground at all hold points

- More than 300 parameters to be calculated
- Safe mechanism to prepare and upload on-board ATV
- Safe verification process

Conclusion on impact of safety on operations

Uniqueness of ATV operations in comparison to most satellite operations regarding safety

- ●Problem on satellite → "barbecue mode" no urgent operations
- Problem on ATV → due to safety aspect: critical operations with high reactivity (=> Permanent link is required)

Safety is an integral part of the mission design & execution

- Redundancy + FDIR + FCM + PFS + ATV-CC monitoring + Crew monitoring
- Docking reliability is traded off against safety, but this is the price to pay to be able to rendezvous and dock with the ISS in a safe manner.

⇒ Major risk = To abort a "non critical" mission !!

Automatic ←=====→ AUTOMATED ←====→ Assisted

