A. Ollero

Introduction Architecture Plan Refining Task Allocation Plan Merging Platform HMI Experiments Conclusions

Ground stations for systems of multiple UAVs interacting with sensors and actuators in the environment

Anibal Ollero ^{(1) (2)} and Iván Maza ⁽¹⁾ <u>aollero@cartuja.us.es</u> <u>aollero@catec.aero</u>

(1) Robotics, Vision and Control Group (GRVC), Universidad de Sevilla(2) Center for Advanced Aerospace Technologies FADA-CATEC

Introduction

Models and Decisional Architecture

Plan Refining Tools

Distributed Task Allocation

Plan Merging Process

Platform Human Machine Interface

Experimental Results

Conclusions and Future Developments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A. Ollero

Introduction

Architecture

Plan Refining

Task Allocation

Plan Merging

Platform HM

Experiments

Conclusions

Introduction

Objectives

- Devise a distributed architecture for the autonomous cooperation of multiple UAVs with the following execution level autonomous capabilities:
 - Take-off and landing.
 - Hovering.
 - Go to a given location (and activate the on-board instrument if required).

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の ○ ○

- Design a human machine interface application for the platform.
- Develop a software implementation of the architecture and the human machine interface.
- Test the implementation with a real multi-UAV platform in different types of missions.

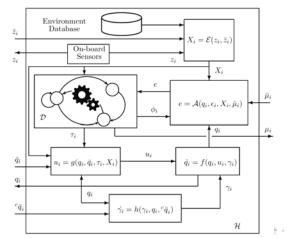
A. Ollero

Introduction

Architecture Plan Refining Task Allocatic Plan Merging Platform HMI

Experiments

Conclusions


Classification of Multi-UAV Systems

Physical coupling

Introduction

Formations

- Swarms
- Intentional cooperation

A. Ollero

Introduction

Architecture

- Plan Refining
- Task Allocation
- Plan Merging
- Platform HMI
- Experiments
- Conclusions

Models and Decisional Architecture

Introduction

- Centralized / Decentralized Decision trade-off:
 - Computational power and scalability.
 - Knowledge's scope and accessibility.
- ► Objective: distributed approach.
 - Why?
 - Scalability.
 - Robustness.
- Issues:
 - Cooperative decision making.
 - Knowledge representation and information fusion.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

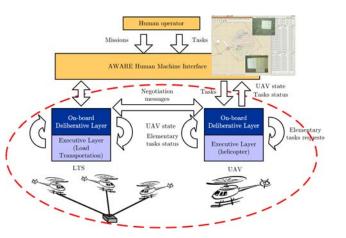
A. Ollero

Introduction

Architecture

Plan Refining Task Allocatio Plan Merging

Platform HM


Experiments

Conclusions

U C

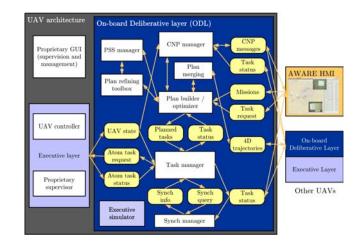
Models and Decisional Architecture

Global Architecture

A. Ollero

Introduction

Architecture


Plan Refining Task Allocatio Plan Merging Platform HMI

Conclusions

Models and Decisional Architecture

U ODL Internal Architecture

A. Ollero

Introduction

Architecture

Plan Refining

Task Allocation

Plan Mergin

Platform HM

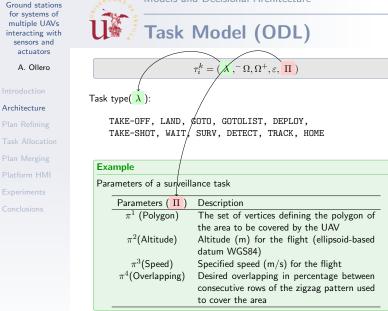
Experiments

Conclusions

Models and Decisional Architecture

$\underline{\tau_i^k} = (\lambda, -\Omega, \Omega^+, \varepsilon, \Pi)$

Task with unique identifier k allocated to the $\emph{i-th}$ UAV, where


- λ : type of task.
- $^{-}\Omega$: set of preconditions of the task.
- Ω^+ : set of postconditions of the task.
- ε : status evolution of the task
- II = {π¹, π²,..., π^m}: set of m parameters which characterizes the task.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Models and Decisional Architecture

Ground stations for systems of	Residence Models and Decisional Architecture					
multiple UAVs interacting with sensors and	U Task Model (ODL)					
actuators						
A. Ollero	$\tau_i^k = (\lambda, -\Omega, \Omega^+, \varepsilon, \Pi)$					
Introduction						
Architecture	Status (ε) Description					
Plan Refining	EMPTY No task					
Task Allocation	SCHEDULED The task is waiting to be executed					
	RUNNING The task is in execution					
Plan Merging	CHECKING The task is being checked against inconsistencies					
Platform HMI	and static obstacles					
Experiments	MERGING The task is in the plan merging process to avoid					
Conclusions	conflicts with the trajectories of other UAVs					
	ABORTING The task is in process to be aborted. If it is finally					
	aborted, the status will change to ABORTED, and					
	otherwise will return to RUNNING					
	ABORTED The task has been aborted (the human operator					
	has aborted it or the UAV was not able to accom-					
	plish the task properly)					
	ENDED The task has been accomplished properly					

Models and Decisional Architecture

A. Ollero

Introduction

Architecture

- Plan Refining
- Task Allocation
- Plan Merging
- Platform HM
- Experiments
- Conclusions

Models and Decisional Architecture

ODL Internal Architecture

- Task manager
 - Manages the interface between ODL and EL.
 - Supports dynamic task insertion and abortion mechanisms.
- Synchronization manager.
 - Deals with preconditions (⁻Ω) and postconditions (Ω⁺) among different UAVs.
- Perception subsystem.
 - Fully distributed probabilistic framework adopted to provide estimations about the objects in the environment.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の ○ ○

A. Ollero

Introduction

Architecture

Plan Refining

Task Allocation

Plan Merging

Platform HM

Experiments

Conclusions

Models and Decisional Architecture

ODL Internal Architecture

Plan builder / optimizer.

- Offline planning based on the EUROPA framework developed at NASA's Ames Research Center.
- Online planning: given a set of n_m motion tasks $\{\tau_i^k/k = 1 \dots n_m\}$ computes the order that minimizes the execution cost $C_i = \sum_{k=1}^{n_m 1} c_i^{k,k+1}$, where $c_i^{k,k+1}$ is the motion

cost between the locations associated to the tasks τ_i^k and $\tau_i^{k+1}.$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

- Executive simulator.
 - Used for debugging purposes.

A. Ollero

Introduction

Architecture

Plan Refining

Task Allocation

Plan Merging

Platform HM

Experiments

Conclusions

U

Plan Refining Tools

Location Monitoring

- Associated task type: $\lambda = TAKE-SHOT$.
- Goal: Monitor a given location $\begin{bmatrix} x_0 & y_0 & z_0 \end{bmatrix}^T$.
- Fixed and known orientation of the on-board camera.
- Assuming a given altitude $z = z_{II}$ and heading for the observation, the coordinates of the UAV will be given by

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 + (z_{\Pi} - z_0)v_x/v_z \\ y_0 + (z_{\Pi} - z_0)v_y/v_z \\ z_{\Pi} \end{bmatrix}$$

with

$$\mathbf{v}_{G} = \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} = \frac{1}{s} \underbrace{\mathbf{R}_{G}^{U} \mathbf{R}_{U}^{C}}_{\text{rotation matrices}} \underbrace{\begin{bmatrix} \frac{v - v_{0}}{\alpha_{v}} \\ \frac{u}{\alpha_{u}} - \frac{u_{0}}{\alpha_{v}} - \gamma \frac{v - v_{0}}{\alpha_{u} \alpha_{v}} \\ 1 \end{bmatrix}}_{\text{camera parameters}}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

A. Ollero

Introduction

- Plan Refining
- Task Allocation
- Plan Mergin Platform HM

Experiment

Conclusions

Plan Refining Tools

U Location Monitoring

Camera Parameters

- (u_0, v_0) : coordinates of the principal point.
- α_u and α_v : scale factors in image u and v axes.
- γ : skewness of the image axes.
- If the location should be in the center of the field of view (default), then

$$\mathbf{m} = [\begin{array}{ccc} u & v \end{array}]^T = [\begin{array}{ccc} w/2 & h/2 \end{array}]^T$$

for a camera resolution of $w \times h$ pixels.

Rotation matrices

- \mathbf{R}_{U}^{C} : from camera to UAV frame.
- \mathbf{R}_{G}^{U} : from UAV to global frame.

- 日本 - 1 日本 - 日本 - 日本 - 日本

A. Ollero

Introduction

Architecture

Plan Refining

Task Allocation

Plan Merging

Platform HM

Experiments

Conclusions

U

Plan Refining Tools

Øbject Monitoring

- Associated task type: $\lambda = \text{TRACK}$.
- ► Goal: Monitor an object k with associated covariance matrix \mathbf{C}_k and estimated state $\mathbf{x}_k(t) = \begin{bmatrix} \mathbf{p}_k(t) & \dot{\mathbf{p}}_k(t) & \theta_k \end{bmatrix}^T$.
- According to (Forssén, 2004)

$$\mathbf{M}_{k} = \left[\begin{array}{cc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array} \right] = \frac{1}{4} \mathbf{C}_{k}^{-1},$$

where \mathbf{M}_k is the matrix describing the shape of an ellipse $(\mathbf{x} - \mathbf{k})^T \mathbf{M} (\mathbf{x} - \mathbf{k}) = 1.$

Major axis of the ellipse:

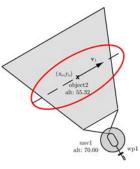
$$\mathbf{v}_{1} = \begin{cases} \frac{1}{\sqrt{(\lambda_{1} - m_{22})^{2} + m_{12}^{2}}} \begin{bmatrix} \lambda_{1} - m_{22} \\ m_{12} \end{bmatrix} & \text{if} \quad m_{11} \ge m_{22} \\ \frac{1}{\sqrt{(\lambda_{1} - m_{11})^{2} + m_{12}^{2}}} \begin{bmatrix} m_{12} \\ \lambda_{1} - m_{11} \end{bmatrix} & \text{otherwise} \end{cases}$$

with $\lambda_{1,2} = \frac{(m_{11} + m_{22}) \pm \sqrt{(m_{11} - m_{22})^{2} + 4m_{12}^{2}}}{2}.$

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A. Ollero

Introduction Architecture Plan Refining Task Allocation Plan Merging Platform HMI Experiments Conclusions



Plan Refining Tools

U 🖉 / Object Monitoring

Example

Waypoint computation for object monitoring tasks



Figure: Object monitoring with a single UAV

Figure: Locations for object monitoring with two UAVs

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A. Ollero

Introduction

Architecture

Plan Refining

Task Allocation

Plan Merging

Platform HM

Experiments

Conclusions

Plan Refining Tools

Øbject Deployment

- Associated task type: $\lambda = \text{DEPLOY}$.
- Task decomposition:
 - Go to the waypoint.
 - Go down until an altitude of h_d meters with respect to the ground is reached.
 - Activate the on-board device for dropping the object.
 - Go up to the initial waypoint altitude.
- Given a deployment task τ_i^k allocated to the *i*-th UAV:

 $\blacktriangleright \ \tau_i^k \to \{ {}^1 \hat{\tau}_i^k, {}^2 \hat{\tau}_i^k, {}^3 \hat{\tau}_i^k, {}^4 \hat{\tau}_i^k \} \ (\hat{\lambda}^k = \text{GOTO})$

A. Ollero

Introduction

Architecture

Plan Refining

- Task Allocation
- Plan Merging
- Platform HM
- Experiments
- Conclusions

Surveillance Missions

Plan Refining Tools

- Associated task type: $\lambda = SURV$.
- ► Goal: To cover a convex area with one or several UAVs.
- Problems to solve:
 - 1. Area partition:
 - Input: relative capabilities (distributed computation) and locations of the UAVs.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の ○ ○

- Output: sub-areas allocated to the UAVs.
- 2. Pattern to cover each sub-area.
 - Output: waypoint list for each UAV.
 - Criteria: minimize the number of required turns.

A. Ollero

Introduction

Architecture

Plan Refining

- Task Allocation
- Plan Merging
- Platform HM
- Experiments
- Conclusions

Surveillance Missions

• Associated task type: $\lambda = SURV$.

Plan Refining Tools

- ► Goal: To cover a convex area with one or several UAVs.
- Problems to solve:
 - 1. Area partition:
 - Input: relative capabilities (distributed computation) and locations of the UAVs.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の ○ ○

- Output: sub-areas allocated to the UAVs.
- 2. Pattern to cover each sub-area.
 - Output: waypoint list for each UAV.
 - Criteria: minimize the number of required turns.

A. Ollero

Introduction

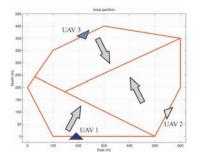
Architecture

Plan Refining

Task Allocatio

Platform HN

Experiment


Conclusions

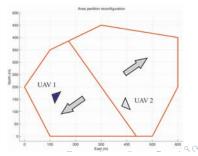

U Surveillance: Area Partition Example

Table: Initial coordinates, sensing width and relative capabilities of the UAVs.

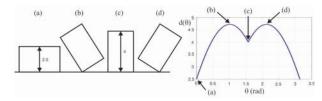
	$x_G(m)$	$y_G(m)$	$z_G(m)$	$w_i(m)$	$c_i(\%)$
UAV1	190.00	0.00	29.00	24.02	24.92
UAV2	550.00	100.00	34.00	25.45	41.81
UAV3	225.38	412.69	20.00	20.00	33.27

Plan Refining Tools

A. Ollero

- Introduction
- Architecture
- Plan Refining
- Task Allocation
- Plan Mergin
- Platform HM
- Experiments
- Conclusions

Surveillance: Coverage Pattern


- **Zigzag** faster than spiral pattern in general (Huang, 2001).
- Find the sweep direction that minimizes the number of turns:

Plan Refining Tools

Number of turns proportional to the diameter function of the polygon

► Diameter function minimum ⇒ test only the sweep directions perpendicular to an edge of the perimeter.

A. Ollero

Introduction

Architecture

Plan Refining

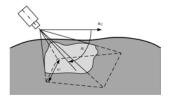
Task Allocation

Plan Merging

Platform HM

Experiments

Conclusions



U Surveillance: Coverage Pattern

- Distance between rows:
 - Sensing width (w).

Plan Refining Tools

 Specified overlapping
(%) between consecutive rows.

A. Ollero

Introduction

Architecture

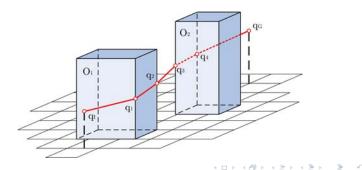
Plan Refining

Task Allocation

Plan Merging

Platform HM

Experiments


Conclusions

U

Plan Refining Tools

Static Obstacles Avoidance

- Initial elevation map available.
- \blacktriangleright Goal: find shortest paths free of obstacles from configuration q_I to $q_{G}.$
- ▶ Obstacles are modelled as boxes on a plain terrain ⇒ combinatorial algorithms (exact and complete) can be applied:
 - Shortest-path roadmap in three dimensions (Jiang et al., 1993).
- Output: a waypoint list avoiding the obstacles.

A. Ollero

Introduction Architecture Plan Refining Task Allocation

Plan Mergin

Platform HM

Experiments

Conclusions

Distributed Task Allocation

🖉 Overview

Problem Statement

Given a set of tasks, decide in a distributed manner which UAV will execute each task

- Three market-based approach algorithms designed and simulated:
 - ▶ SIT and SET: independent tasks.
 - S+T: tasks requiring explicit cooperation (communication relay).
- Algorithms based on the *Contract Net Protocol*.
- An auction mechanism is used to allocate the tasks:
 - The auctioneer announces the tasks to be executed.
 - Each UAV bids for the tasks.
 - Each task is allocated to the UAV with the "best" bid.
 - Partial local plans are used to compute the bid (insertion cost of the new task in the current plan).

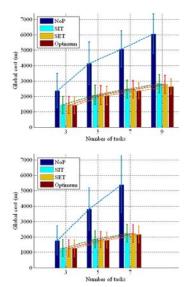
A. Ollero

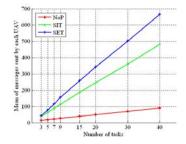
- Introduction
- Architecture
- Plan Refining
- Task Allocation
- Plan Mergin
- Platform HM
- Experiments
- Conclusions

Distributed Task Allocation

U SIT and SET Algorithms

- SIT algorithm:
 - Individual tasks negotiated.
- SET algorithm:
 - Each UAV can generate group of tasks for the negotiation.
 - If all the groups have one task \Rightarrow SET \equiv SIT.
- Simulation environment:
 - Code of the algorithms in the simulations: used later with the real platform.
 - Scenario: world of 1000×1000 meters.
 - Mission: visit the waypoints and return home.
 - Waypoints located at random and 100 runs per configuration to generate the statistical performance metrics.
 - Global cost: sum of the individual costs of the UAVs to achieve the mission.
 - Results compared with NoP algorithm (no local plan used when bidding) and the minimum cost.


A Ollero


Task Allocation

Distributed Task Allocation

SIT and SET Simulation Results

SIT vs SET

- SIT algorithm:
 - Better trade-off between solution computed and messages required.

ъ

Chosen for the experimental validation. (日)、(四)、(日)、(日)、

A. Ollero

- Introduction
- Architecture
- Plan Refining
- Task Allocation
- Plan Merging
- Platform HM
- Experiments
- Conclusions

Plan Merging Process

Approach Adopted

- Main criteria: guarantee maximum safety.
- Assumption: hovering or pseudo-hovering (circles) capabilities.
- Considering the motion of the *i*-th UAV:
 - State s_i^1 : stationary flight at waypoint P.
 - State s_i^2 : flying between waypoints P^k and P^{k+1} (path Δ_i^k).
- Conflicts with the *j*-th UAV ($s_i^1 \rightarrow s_i^2$ transition):
 - Type A (if s_j = s¹_j): between next path Δ^k_i and current position of the *j*-th UAV.
 - ► Type B (if s_j = s_j²): between next path Δ_i^k and path Δ_j^l being currently followed by the *j*-th UAV.

Problem formulation

Avoid conflicts of type A and B in the transitions $s_i^1 \to s_i^2 ~\forall~i=1,\ldots,n$

A. Ollero

- Introduction
- Architecture
- Plan Refining
- Task Allocation
- Plan Merging
- Platform HM
- Experiments
- Conclusions

Distributed Method

Plan Merging Process

- \blacktriangleright Task state $\epsilon^k = \texttt{MERGING}$ inserted between <code>SCHEDULED</code> and <code>RUNNING</code>.
- Distributed algorithm based on *request* and *reply* messages. Transitions:
 - $\chi_1: \epsilon^k = \text{MERGING}$
 - Broadcast a *request* message.
 - χ_2 : $receive(m)_{j,i}$ with $m = request(x, \Delta_j^l)$
 - If no conflicts \Rightarrow answer with *reply* message.
 - χ_3 : $receive(m)_{j,i}$ with m = reply
 - ► If reply messages received from all the UAVs ⇒ proceed with the execution.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Lemma: The method guarantees that a path Δ_i^k is executed by the *i*-th UAV only if it is clear of other UAVs (proof provided).

A. Ollero

Introduction

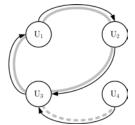
Architecture

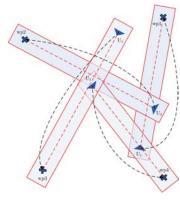
Plan Refining

Task Allocation

Plan Merging

Platform HM Experiments


Conclusions


Plan Merging Process

Ué / Deadlocks Solution

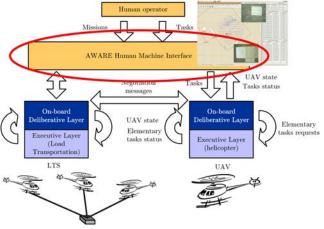
- Distributed deadlock detection algorithm:
 - Based on probe messages (Lee and Kim, 2001).
 - Assumption: messages received correctly in order.
 - Performance:
 - All true deadlocks detected.
 - Deadlocks not reported falsely.
- Example:

Associated wait-for graph

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A. Ollero

Introduction Architecture Plan Refining Task Allocation Plan Merging Platform HMI


Experiments

Conclusions

Platform Human Machine Interface

Global Architecture

Human Machine Interface Application

- A. Ollero
- Introduction
- Architecture
- Plan Refining
- Task Allocation
- Plan Merging
- Platform HMI
- Experiments
- Conclusions

Platform Human Machine Interface

Introduction

- Graphical application to:
 - Monitor the platform state: UAVs, sensor nodes, cameras, etc.
 - Insert tasks and missions.
- Operator's workload significantly decreased during the missions due to the autonomy of the platform:
 - Inter-UAV collision avoidance.
 - Task allocation process.
 - Static obstacles avoidance.
 - Plan refining tools.
- Research done in this area:
 - Study the improvement associated to the use of multimodal interfaces for the alerts awareness of the user.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の ○ ○

A. Ollero

Introduction

Architecture

Plan Refining

Task Allocation

Plan Merging

Platform HMI

Experiments

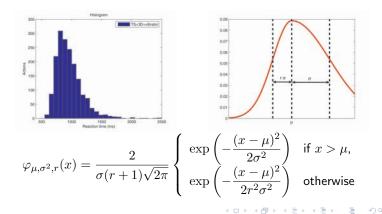
Conclusions

Platform Human Machine Interface

Us / Multimodal Setup

- Three different modalities considered:
 - ► Aural: speakers (speech synthesis) and headset (3D audio).
 - ► Visual: three touchscreens.
 - ► Tactile: three wireless vibrators (chest and left and right arms).

- Tests performed:
 - "Yes" and "No" buttons appear in random positions on the several touchscreens during a programmed period.
 - Operator's task: Press only "Yes" buttons as soon as possible (i.e. as an alert acknowledge).
 - ► Reaction time and errors were measured.


A. Ollero

Introduction Architecture Plan Refining Task Allocation Plan Merging Platform HMI U

Platform Human Machine Interface

Ué / Analysis of the Tests

- Histograms computed for each setup.
- To capture the temporal asymmetric distributions, the Asymmetric Gaussians (AG) have been considered.

A. Ollero

Introduction

Architecture

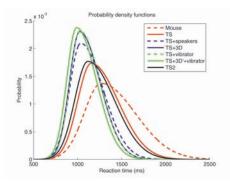
Plan Refining

Task Allocation

Plan Merging

Platform HMI

Experiments


Conclusions

Platform Human Machine Interface

U Summary of the Results

- Experimental setups:
 - Mouse.
 - TS: touchscreens.
 - TS+speakers: touchscreens and conventional sound.
 - TS+3D: touchscreens and 3D sound.
 - TS+vibrator: touchscreens and tactile.
 - TS+3D+vibrator: touchscreens, 3D sound and tactile.
 - TS2: touchscreens test repeated.

(日)、(四)、(日)、(日)、

- The operator's performance is improved adding modalities.
- Different relevance of the modalities.

A. Ollero

Introduction Architecture Plan Refining Task Allocation Plan Merging Platform HMI Experiments

Platform Human Machine Interface

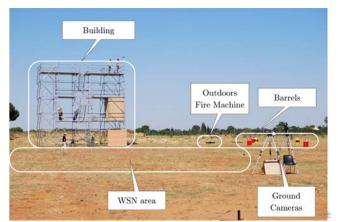
U 🖉 🖉 Virtual head mounted display

A. Ollero

Introduction Architecture Plan Refining Task Allocation Plan Merging Platform HMI Experiments Conclusions

Platform Human Machine Interface

U Head-tracking for 3D environments


A. Ollero

- Introduction
- Plan Refining
- Task Allocation
- Plan Mergin
- Platform HM
- Experiments

Experimental Results

Experimentation Scenario

- AWARE Project framework.
- Location: Iturri Group facilities in Utrera (Seville).
- Validation scenarios: disaster management and filming.

A. Ollero

Experiments

Experimental Results

U AWARE Platform Components

A. Ollero

Introduction

Architecture

Plan Refinin

Task Allocatio

Plan Merging

Platform HM

Experiments

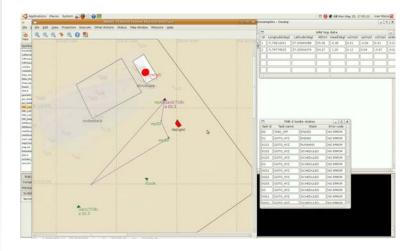
Conclusions

Experimental Results

Scheduling and Metrics

Mission	Date		Brief description							MI	UAV	/ G	CN	WSN	FT
1	16th April 08	Node deployment							√	~			~		
2	25th May 09	Firemen tracking							\checkmark	\checkmark		\checkmark	\checkmark		
3	25th May 09	Firemen tracking							\checkmark	\checkmark		\checkmark	\checkmark		
4	25th May 09	Surveillance							\checkmark	\checkmark					
5	25th May 09	Node deployment & fire monitoring						5	\checkmark	\checkmark			\checkmark	\checkmark	
6	25th May 09	5th May 09 Node deployment & fire monitoring						5	\checkmark	\checkmark			\checkmark	\checkmark	
7	26th May 09 Fire monitoring							\checkmark	\checkmark			\checkmark	\checkmark		
8	26th May 09	Surveillance							\checkmark	\checkmark				\checkmark	
9	28th May 09	Load transportation							\checkmark	\checkmark					
10	28th May 09	Node deployment							\checkmark	\checkmark			\checkmark		
11	28th May 09	Fire monitoring							\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
12	28th May 09	Surveillance								✓	~				✓
Mission #			2	3	4	-	6	7	8	0	10	11	10	Tetel	_
				-	4	5		•		9	10	11	12	Total	_
Tasks received from the HMI			9	10	8	12	12	6	8	3	4	6	8	86	
Elementary tasks sent			9	10	22	21	21	6	28	3	7	6	18	151	
to the executive															
Tasks generated by the			4	4	18	13	13	3	24	0	3	3	14	99	
plan refiner															
Coordination messages		ges	12	12	66	34	34	0	78	0	0	0	58	294	
interchanged															
Potential conflicts man- aged successfully			6	6	18	17	17	0	24	0	0	0	14	102	

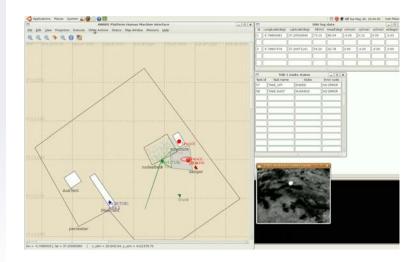
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙


A Ollero

Experiments

Usersor Deployment Mission

Experimental Results



A. Ollero

Introduction Architecture Plan Refining Task Allocation Plan Merging Platform HMI Experiments Juer SIDAD

Experimental Results

U Fire Confirmation and Extinguishing

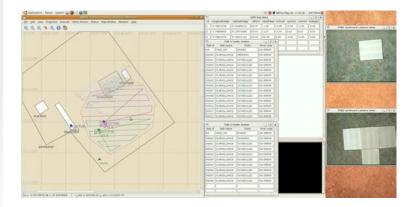
◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへ⊙

A. Ollero

Experiments

Experimental Results

U People Tracking Mission

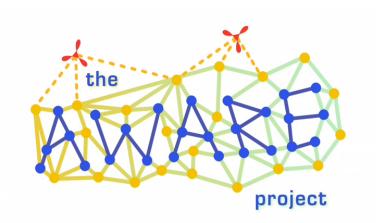


A Ollero

Experiments

U Surveillance Mission

Experimental Results


A. Ollero

Experiments

Experimental Results

U AWARE Project Video

・ロット (雪) () () () ()

Э

A. Ollero

- Introduction
- Architectur
- Plan Refining
- Task Allocation
- Plan Merging
- Platform HM
- Experiments
- Conclusions

Conclusions and Future Developments

Conclusions

- Field validation of a very complex system in a context of specific end-user requirements.
- Research contributions in the following areas:
 - Autonomous complex task decomposition.
 - Distributed task allocation algorithms.
 - Distributed plan merging to avoid inter-UAV conflicts.
 - Human machine multi-modal interfaces.
- Strong emphasis on the experimental validation of the architecture. Lessons learned:
 - Time synchronization (NTP), data marshalling, common coordinate frames, etc.
 - Relevance of the integration meetings to debug the software interfaces using simulators (more than 20 in the last year).

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の ○ ○

- Successful mission execution requires reliable:
 - Decisional level software.
 - UAV platform (TUB and FC in AWARE).

A. Ollero

Introduction

- Architecture
- Plan Refining
- Task Allocation
- Plan Merging
- Platform HMI
- Experiments
- Conclusions

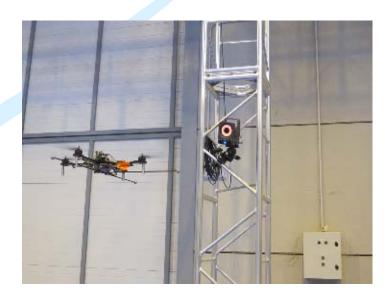
Conclusions and Future Developments

Future Developments

- Test the distributed architecture with other UAVs (including fixed wing).
- Integrate the EUROPA planner for online planning (documentation still poor).
- Derive theoretical performance metrics of the distributed plan merging algorithm (number of deadlocks, deadlock duration, etc.).
- Integrate head tracking technologies in the human machine interface:
 - HMI aware of the operator's state.
 - 3D views control.
- Experimental validation of the S+T algorithm for task allocation under communication range constraints.
- Extend the plan refining tools to cover a wider spectrum of missions.

CATEC UAVs

*


Multi-vehicle systems lab

- Multi-vehicle testbed
 - "Rapid prototyping of multi-vehicle systems"
 - -14x14x5 meters
 - Based on VICON cameras
 - More than 10 mobile objects/humans at the same time
 - 3D position and pose accurate and high rate information
 - Up to 10 flying vehicles at the same time
 - 8 Hummingbird quadrotors: 200gr payload (small visual camera)
 - 2 Pelican quadrotors: 500gr payload (Hokuyo laser with onboard computer)
 - Suitable for testing: Distributed planning, task allocation, Share of common resources
 - ATM: High level mission decomposition, Taskbased guidance, Ground and aerial cooperation

