
ECCEROBOT Leader mondial de la robotique compliante & anthropomimetic

GDR Robotique 12 Décembre 2011

The Robot Studio sarl - History

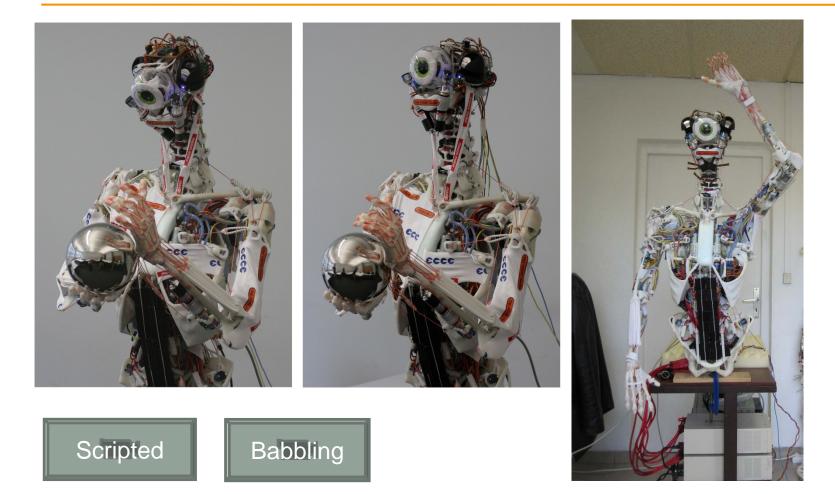
- Founded in 2008 in Divonne les Bains 3 people.
- The Robot Studio is involved in Research and Development in the field of Robotics.
- The founder, Rob Knight, was a key member of the team at Essex University that produced "Cronos" which was the first, and also the most sophisticated, «compliant » robot in Europe.
- Compliance essentially provides non rigidity and replicates the advantages of the human structure.
- The objective is to progress research into compliant humanoid robotics, which are safe, power efficient and reproducible at a low cost.
- The compliant concept will revolutionise the exploitation of androids.

the robot studio

ECCERobot Project

- Embodied Cognition in a Compliantly Engineered Robot
- Three year project 2008 2011
- Consortium of:
 - University of Sussex
 - University of Zurich
 - University of Munich
 - University of Belgrade
 - The Robot Studio
- Grant value 2.5 million Euros
- Three control strategies:
 - Classical control theory
 - Physics based internal models
 - Sensor-motor patterns
- Open project maximum dissemination

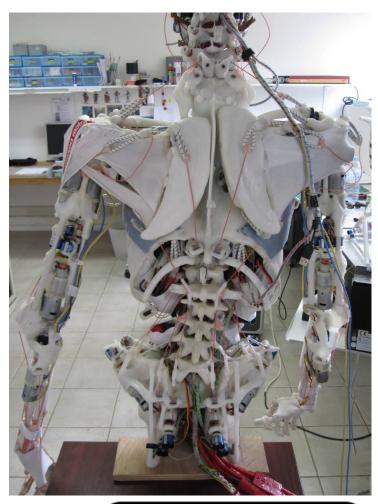
the robot studio


The Hardware

- Hand-built using Polymorph.
- Tendons are made of "Spectra- Kite Line".
- Compliance provided by ultra-low compression set polyurethane.
- Muscles are DC brushed motors:
 - Cordless screw-drivers cheap, noisy, poor control
 - MAXON servo excellent, lot more expensive
- Teflon linings to reduce friction
- Sensors:
 - Motor position potentiometer
 - Motor position encoder
 - Motor force
 - Joint angle
 - Inertial Measurement Units (future)

The Robot

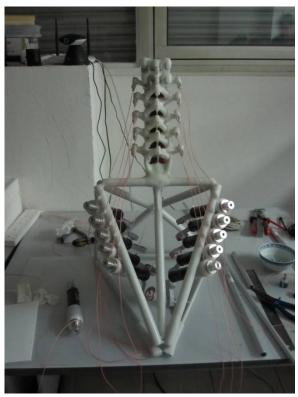
MAXON Motors


- Vastly superior power to volume, power density & precision - vastly more expensive
- Small size in hand & neck
- Medium size used in shoulders, arms and spine
- Large size used in legs
- Considerably more powerful robot may now be capable of destroying itself – a control consideration
- Very low back torque active postural control required

the robot studio

Fatigue Modes - Scoliosis

- Pronounced curvature in lumbar spine
- No definite agreed medical cause
- Probably misalignment of vertebrae leading to shifting of soft centre in the robot
- Correctable with extra motors



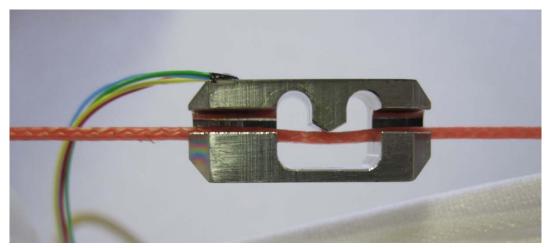


Assembly Precision

 Pelvis set up as a triangulated framework - more space for motors to allow full control of lumbar spine

Standard Sensors

- Key sensors are:
 - Tension or force sensor for each actuated tendon
 - General purpose positional sensor for complex joints i.e. everything other than the elbow
- Force sensor Industrial load cells
 - Minimum diameter ¹/₂"
 - Very expensive approx €600
 - Requires a cut in tendon
 - Likely to foul
- Magnetopots considered for positional sensor
 - Good life
 - Too large



Custom Sensors

Tendon sensor custom-designed

- Very small
- Cheaper
- Can easily be repositioned
- Will slide instead of foul

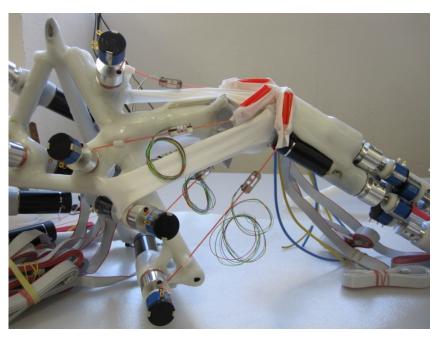
Fatigue Modes – Lumbar Spine

- Intervertebral discs:
 - Compress over the course of the day - causes change in posture
 - Have not herniated yet lie the robot down at night to improve life - allows discs to recover shape
- Intervertebral joints:
 - Experience much higher loads than anticipatedimproved bonding technique for PTFE pads

Other Fatigue Modes

Shoulder dislocation:

- Occurred originally due to control errors
- Getting progressively more frequent
 - Changing characteristic of joint surfaces due to contamination
 - Stabilising fabrics stretched
- Correctable in ECCE2 with better control and extra motors


Damaged motor cables:

- By pinching in joints:
 - Force control to maintain tension
- By shock loading
 - All tendons elastically terminated

Hardware Platform Manufacture

- Need to develop CAD 3D scanning and CAD printing to achieve semi-automation of the production.
- We approached all CAD companies close to Divonne – only one company would even agree to meet us – estimated the production of a CAD model at 2 man-years.
- The problem is "The body is not an engineered design"
- CAD is designed for rigid, engineered shapes, not tendons, elastomers or fabrics
- Complexity is unavoidable many processes, lots of operations – need to focus on simplifying each operation and finding better materials.
- Manufacturing time currently 6 months per unit.
- Main function is as an integration test bed for hardware electronics and software.

Arm Elements

- Commercialise an arm element for R&D
- 15 active degrees of freedom – thumb & 2 fingers
- Optional fully dextrous hand additional 15 degrees of freedom
- Identify manufacturing partners

Arm

Full Android

- This is the next major project
- Currently looking for funding and partners
- Probably 2-3 year timescale

Thank You

